Category Archives: Math

Analitička geometrija i C# programiranje dio 5/n


Problem 6: Presjek prave i ravni.

Pretpostavimo da imamo pravu p na kojoj poznajemo koordinate tačaka A i B. Također pretpostavimo da imamo ravan Π koja je definisana tačkom na ravni R i vektorom normale V. Potrebno je izračunati koordinate tačke A’ odnosno probodišta.

angprogr_slproblem5

Rješenje:

Za rješenje ovog problem potrebno je da znamo parametarski oblik jednačine prave, odnosno jednačinu ravi. Pored toga potrebno je da znamo vektorski odnosno skalarni proizvod dva vektora.

Ukoliko imamo dvije tačke A i B, jednačina prave kroz dvije tačke data je kao:

\frac{x-X_A}{X_B-X_A}=\frac{y-Y_A}{Y_B-Y_A}=\frac{z-Z_A}{Z_B-Z_A},

gdje je (X_A,Y_A,Z_A) koordinate tačke A, a (X_B,Y_B,Z_B) koordinate tačke B.

Opći oblik jednačine ravni koja je definisana jednom tačkom i vektorom normale data je u obliku:

A(x-X_R)+B(y-Y_R)+C(z-Z_R)=0 ,

gdje je (A,B,C) predstavlja koordinate vektora normale, a R(X_R,Y_R, Z_R) koordinate tačke R koja pripada toj ravni.

Postupak rješavanje probojne tačke je slijedeći:

 

1. Formirajmo parametarski oblike jednačine prave p, gdje t predstavlja parametar.

p(t)=A+t(B-A), ………(1)

2. Uvrštavajući gornju jednačinu prave u jednačinu ravni imamo:

V x (A'-V)=0. ………(2).

Zamjenom 1 u 2 možemo izračunati parametar t:

t= V x (V-A)/(N x (B-A)) .

Kada imamo vrijednost parametra t, sada je moguće izračunati koordinate tražene tačke A’.

C#  implementacija problema 6 izgleda na slijedeći način.

Implementacije klase Point koja implementira tačku u 3D prostoru preko koordinata x,z,y, te skupa metoda za skalarni, vektorski proizvod, kao i modul vektora.

class Point
{
    public float x;
    public float y;
    public float z;
    public Point() { }
    public Point(float xx, float yy, float zz)
    {
        x = xx;
        y = yy;
        z = zz;
    }

    /// <summary>
    /// Izracunavanje vektorskog proizvoda dva vektora
    /// </summary>
    /// <param name="vectorA"></param>
    /// <param name="vectorB"></param>
    /// <returns>vektorski proizvod</returns>
    public static Point CrossProduct(Point vectorA, Point vectorB)
    {
//                | i  j  k  |
//                | x1 y1 z1 |=i*(y1*z2-z1*y2)-j*(x1*z2-z1*x2)+k*(x1*y2-y1*x2)
//                | x2 y2 z2 |

        return new Point()
        {
            x = vectorA.y * vectorB.z - vectorA.z * vectorB.y,
            y = -vectorA.x * vectorB.z + vectorA.z * vectorB.x,
            z = vectorA.x * vectorB.y - vectorA.y * vectorB.x
        };
    }

    /// <summary>
    /// Izracunavanje skalarnog proizvoda dva vektora
    /// </summary>
    /// <param name="vectorA"></param>
    /// <param name="vectorB"></param>
    /// <returns></returns>
    public static float ScalarProduct(Point vectorA, Point vectorB)
    {
//      proizvod=x1*x2+y1*y2+z1*z2
        float retVal = vectorA.x * vectorB.x + vectorA.y * vectorB.y + vectorA.z * vectorB.z;
        return retVal;
    }
    /// <summary>
    /// Odredjivanje vektora kroz dvije tacke
    /// </summary>
    /// <param name="A"></param>
    /// <param name="B"></param>
    /// <returns></returns>
    public static Point Vector(Point A, Point B)
    {
        //referentni vektor ili pravac kroz referentne tačke na pravoj
        Point vektor = new Point();
        vektor.x = B.x - A.x;
        vektor.y = B.y - A.y;
        vektor.z = B.z - A.z;

        return vektor;
    }

    /// <summary>
    /// Odredjivanje modula vektora
    /// </summary>
    /// <param name="A"></param>
    /// <returns></returns>
    public static float Modul(Point A)
    {
        return (float)Math.Sqrt(A.x*A.x+A.y*A.y);
    }
}

Kada imamo ovako implementiranu klasu onda je određivanje probojne tačke prave i ravni dato kao:

static void Main(string[] args)
{
    //Zadatak 1: data je ravan 2x-y+z-6=0 i prava (x)/-1 = (y-1)/-1 ) (z-6)/1
    //ulazni podaci za zadatak 1.
    Point B  = new Point(2f,  4f,  0f);      //tacka na pravoj
    Point A  = new Point(0f,  1f, -1f);   //tačka na pravoj
    Point R  = new Point(0f,  0f,  6f);     //tacka na ravni
    Point Vn = new Point(2f, -1f,  1f);   //vektor normalne ravni

    //Zadatak 2: data je ravan 2x-y+z-6=0 i prava (x-1)/-1 = (y+1)/-1 ) = (z-4)/1
    //ulazni podaci za zadatak 2.
    //Point B = new Point(0f, -2f, 5f);      //tacka na pravoj
    //Point A = new Point(1f, -1f, 4f);   //tačka na pravoj
    //Point R = new Point(0f, 0f, 6f);     //tacka na ravni
    //Point Vn = new Point(2f, -1f, 1f);   //vektor normalne ravni
           
    //Probojna tačka koju treba odrediti
    Point proboj = new Point();
          
    //Vektor pravca kojeg obrazuju tacke A i B
    Point zraka = Point.Vector(A,B);

    //ako je skalarni proizvod vektora prave i normale jednak nuli
    // tada prava ne sijece ravan
    float scalVal = Point.ScalarProduct(Vn,zraka);
    if(scalVal==0)
    {
        Console.WriteLine("Prava ne sijece ravan");
        Console.Read();
        return;
    }

    //skalarni proizvod tačke na ravni sa
    float D = Point.ScalarProduct(Vn,R);
    float AR = Point.ScalarProduct(A,Vn);
    float zrakaR = Point.ScalarProduct(zraka,Vn);
    //
    float t = (D - AR) / (zrakaR);

    //tacka probodistva
    proboj.x = A.x + zraka.x * t;
    proboj.y = A.y + zraka.y * t;
    proboj.z = A.z + zraka.z * t;

    Console.WriteLine("Tacka probodista je A'({0},{1},{2})",proboj.x,proboj.y,proboj.z);
    Console.Read();
}

Poglavlje III – IZVODI FUNKCIJE


Zadnji u nizu blog postova teksta iz 1996 godine. Cjelokupan tekst može se pogledati ovdje.

1.1 Povijest izvoda

Kad ne bi bilo izvoda (derivacije) svi naši snovi vezani za uspjeh u polju matematike bili bi lako ostvarivi. Matematika bi se bavila samo elementarnim stvarima. Doista, matematika bi se svela na elementarnu matematiku. Kažu da padom jabuke na Newtonovu glavu sve je krenulo drugačije. Ta nesretna jabuka okrenula je Newtona tada ka spoznaji osnovnih zakona dinamike i gravitacije. Newton je za dokaz svojih zakona, povrh siromašnih eksperimenata koje je izvodio, za svoje zakone morao naći matematički aparat da ih dokaže. Otkrićem diferencijalnog i integralnog računa Newton je dokazao svoje zakone, a nama običnim smrtnicima – studentima ostavio jabuke i diferencijalni račun za posvetu.

Mnogi filozofi se spore o tome koliko je jabuka palo na Newtonovu glavu. Veliki dio njih zagovara tezu da je nemoguće da padom samo jedne jabuke opravdava činjenicu Newtonovog djela. Po njihovom mišljenju smatra se da je na Newtonovu glavu palo bar desetak jabuka i to krupnijih koje rastu na vrhu drveta, u malom vremenskom intervalu clip_image002. Kad ne bi bilo izvoda, čitav ovozemaljski razvoj tehnike i tehnologije sigurno bi bio na stepenu razvoja u Newtonovo doba. Možemo s pravom reći da smo imali sreće. Da nema izvoda sigurno ne bi bilo ni kompjutera, ni video igrica ni flipera. Povrh svih mučnina koje nam zadaje izvod, ipak neka samo postoje kompjuteri i ostalo uz njih, a za izvode ćemo lako – rekao je neko iz mase.

POJMOVI PREKO KOJIH SE DEFINIŠE IZVOD

Da bismo definisali izvod neke funkcije moramo objasniti neke sporedne stvari koje okružuju izvod, a to su:

• Tangenta i konstrukcija tangente

• Srednja i trenutna brzina

1.1.1 Konstrukcija tangente

Definicija tangente u elementarnoj geometriji, koja se radi u osnovnoj školi, definiše tangentu kao jednu pravu koja ima samo jednu zajedničku tačku sa kružnicom. Međutim, ima tu nešto. Tačno je da se radi o jednoj tački i tačno je da se radi o pravoj. Međutim, kada pogledamo iz drugog ugla stvari odnosno sliku 3.1, vidimo kako jedna prava clip_image004 siječe parabolu samo u jednoj tački, ali ova prava nije tangenta date parabole u toj tački. Prava tangenta u toj tački je prava clip_image006 koja je normalna na pravu clip_image004[1] i prolazi tačkom clip_image008.

clip_image010

Slika  3.1  Položaj krive, sječice i tangente

Da bi smo došli do valjane definicije tangente uočimo sliku i sve što je na njoj nacrtano. Slika 3.2 sadrži jednu krivu clip_image012, dvije tačke clip_image014te pravu clip_image016koja spaja ove tačke. Vidimo da prava clip_image018 siječe krivu u obliku kriške lubenice te ćemo je nazvati sječica clip_image020. Kada hoćemo da odsjećemo što manji komad lubenice odnosno krive, mi ćemo postupiti tako da tačkuclip_image022pomjeramo prema tački clip_image024 preko ruba lubenice odnosno krive. Ako se tačka clip_image026, krijući se, približava tački clip_image024[1] kriška lubenice će se sve više smanjivati.

clip_image028

Slika  3.2  Sječica

Sječica će se mijenjati u odnosu na početni položaj, i kad tačka clip_image026[1] teži tački clip_image024[2], teži jednom graničnom položaju. Granični položaj sječice clip_image020[1] upravo će biti tangenta, tj. lubenica će ostati čitava.

Definicija 3.1.

Tangenta krive  u datoj tački clip_image030 zove se granični položaj sječice clip_image032 kada tačka clip_image034 ove krive teži  po krivoj ka tački clip_image030[1].

Ako se napravimo Englezi i želimo da ne odsječemo lubenicu tj. da nam tačka clip_image026[2] teži tački clip_image024[3] koeficijent smjera krive u tački clip_image024[4] jednak je koeficijentu smjera tangente krive u toj tački. Sve prethodno rečeno kažimo na jednom drugom (matematičkom) jeziku.

Posmatrajmo sliku, tamo ćemo vidjeti krivu clip_image012[1] sličnu prošloj krivoj i koordinatni sistem clip_image036. Ova kriva koju vidimo je grafik neprekidne funkcije clip_image038. U gornjem dijelu smo kazali da je kojeficijent smjera sječice koja prolazi tačkama clip_image040 koje imaju koordinateclip_image042, a clip_image044. Koordinate tačke clip_image026[3] lako se prepoznaju ako znamo da je clip_image046 odnosnoclip_image048, što se sa slike može vidjeti. Nadalje, znamo da je koeficijent smjera dat izrazom:

clip_image050

(2.1)

clip_image052

Slika  3.3  Sječica

Dakle koeficijent smjera tangente clip_image006[1] krive clip_image038[1] u tački clip_image054 jednak je graničnoj vrijednosti količnika clip_image056 priraštaja funkcije clip_image058 i priraštaja argumenta (nezavisno promjenjive clip_image060) clip_image062 kad on teži nuli.

Kao i u Poglavlju I (Matematička indukcija) mi definišemo neke sporedne pojmove, nesvjesno dolazimo do onoga čemu ovdje težimo da definišemo – to je prvi izvod funkcije. Zadnja tvrdnja koju smo napisali izraz 2.1 zovemo prvi izvod funkcije clip_image064 ili kraće izvod funkcije clip_image064[1], a kojeg obilježavamo sa clip_image066 (čitaj clip_image068 prim jednako clip_image070 prim od clip_image060[1]). Dakle prvim izvodom funkcije zovemo:

clip_image072

(2.2)

Na ovaj način smo definisali šta je koeficijent smjera krive u tački, odnosno koeficijent smjera tangente u tački, a istovremeno smo se upoznali sa osnovnom metodom određivanja koeficijenta smjera tangente u datoj tački krive, odnosno vidjeli smo jednostavni postupak konstruisanja tangente.

1.1.2 Srednja i trenutna brzina

Iz fizike nam je dosta stvari jasno kada spomenemo srednju i trenutnu brzin. Kada smo slušali predavanja iz fizike profesori su nam objašnjavali da je srednja brzina količnik priraštaja puta clip_image074 i vremenskog intervala clip_image076tj. priraštaja vremena za koje je tijelo prešlo put clip_image074[1], odnosno:

clip_image078

(2.3)

Znamo da je zakon puta skoro uvijek povezan sa vremenom clip_image006[2], pa je clip_image080. Ako posmatramo priraštaj puta clip_image074[2] koji je tijelo prešlo za clip_image082 možemo napisati kao clip_image084, pa nam je srednja brzina jednaka:

clip_image086

(2.4)

S gornjim izrazom uvijek se može izračunati neka srednja brzina koje se u toku nekog vremenskog intervala clip_image082[1] promijenila više puta. Međutim, ako posmatramo vremenski interval clip_image082[2] što manji promjene brzine za dati vremenski interval će biti sve manje. Kada pustimo da clip_image088 srednja brzina će postati trenutna:

clip_image090

(2.5)

Trenutna brzina (brzina u trenutku t odnosno clip_image092 je granična vrijednost srednje brzine u vremenskom intervalu clip_image094 kad clip_image096. Drugim riječima:

clip_image098

(2.6)

I ovdje vidimo da je trenutna brzina kretnja izvod dužine puta po vremenu. Na ovaj način (preko srednje i trenutne brzine) je Newton definisao izvod funkcije pa se čak može reći da je orginalna definicija izvoda upravo definisana preko srednje odnosno trenutne brzine. Možemo s pravom kazati: Izvod je brzina promjene dužine puta po vremenu.

 

1.2 Pojam IzvodA funkcije

Namjernim raspravljanjem o tangenti i srednjoj i trenutnoj brzini odnosno koeficijentu smjera tangente došli smo do pojma izvoda:

clip_image066[1]

(2.7)

Kao i kod definisanja trenutne brzine, u koliko je poznat zakon puta clip_image080[1], do pojma izvoda možemo doći bilo kakvim izračunavanjem brzine promjene neke veličine u toku vremena ako je poznat zakon ovisnosti te veličine od vremena.

Definicija 3.2.

Izvod funkcije clip_image100 po argumentu clip_image102 je granična vrijednost količnika priraštaja funkcije i priraštaja argumenta kad priraštaj teži nuli, tj.

clip_image104

Kada govorimo o izvodima često se spominje riječ od 3 slova – diferenciranje. Diferenciranje nije ništa drugo do granični proces kojim se dolazi do izvoda y’ funkcije clip_image068[1]. Za funkciju clip_image038[2] koja ima izvod u tački clip_image060[2] kažemo da je diferencijabilna u toj tački. Kada kažemo da je funkcija direfencijabilna na nekom intervalu clip_image106 to znači da je ista diferencijabilna u svakoj tački intervala.

Vidjeli smo i prije nego smo definisali izvod da ona (kako je na početku rečeno) ima veliku primjenu. Kada krenemo od geometrijske interpretacije izvoda do mehanike, preko fizike i td, sve do kompjutera video-igrica i flipera.

Razmotrimo jednu važnu osobinu izvoda funkcije, a to je diferencijabilnost i neprekidnost. Prije nego smo interpretirali izvod, pretpostavljali smo da nam funkcija mora biti neprekidna. Neprekidnost i diferencijabilnost tvore sljedeću teoremu:

Teorema 3.1.

Ako funkcija clip_image100[1] definisana na intervalu clip_image108 ima izvod u tački koja pripada tom intervalu odnosno clip_image110, (odnosno diferencijabilna je u datoj tački), tada je ona i neprekidna.

Dokaz:

Pretpostavka teoreme je da je funkcija diferencijabilna u tački clip_image060[3] tj. postoji clip_image112. Ako nam je clip_image114, tada možemo pisati:

clip_image116

Sada imamo, ako primijenimo granični proces na zadnji izraz:

clip_image118

Dakle, kada clip_image120, tada clip_image122. To znači da diferencijabilna funkcija clip_image038[3] je istovremeno i neprekidna u datoj tački.

Ovo je jedan od najvažnijih teorema koji se tiče Izvoda funkcije. Jednostavno bez ovog teorema ne bi smo mogli tako jednostavno “šetati” područjem izvoda. Gotovo kod svakog zadatka koji se tiče izvoda neke funkcije koristi se ovaj teorem.

Ako bi se pitali da li važi obrnut teorem, tj. da li je funkcija diferencijabilna ako je neprekidna, odgovor na ovo pitanje bio bi “NE”. Prije nego dokažemo ovaj teorem pročitajte sljedeću napomenu.

Napomena 3.1.

U matematici postoje dokazi za neke teoreme koje sprovodimo na taj način da nađemo bar jedan primjer koji opovrgava datu teoremu. Jednostavno pokazujući na jednom primjeru kontradiktornost teoreme mi je samim tim i dokazujemo.

Teorema 3.2.

Da li važi obrnut teorem prethodne Teoreme 2.1.

Dokaz:

Ovaj teorem ćemo dokazati navođenjem samo jednog primjera koji govori o tome da obrat ne važi. Posmatrajmo funkciju clip_image124. Ta funkcija je neprekidna na čitavom intervalu realnih brojeva. Graf funkcije daje je na slici 2.3. Sa slike se može vidjeti da jeclip_image126a clip_image128. Iz zadnjih izraza vidimo da je granična vrijednost količnika clip_image130za lijevu i desnu graničnu vrijednost po argumentu clip_image132različita, što znači da derivacija funkcije clip_image124[1] u tački clip_image134 nema jedinstven izvod. Drugim riječima funkcija clip_image038[4] u tački clip_image134[1] nije diferencijabilna. Dokaz teoreme je završen.

clip_image136

Slika  3.4  Grafik funkcije clip_image138.

Na osnovu prethodne dvije teoreme zaključujemo: svaka diferencijabilna funkcija ujedno je i neprekidna, dok svaka neprekidna funkcija nije uvijek i diferencijabilna. Pojam diferencijabilnosti je uži pojam od pojma neprekidnosti.

Matematika odabrana poglavlja konačno u digitalnoj formi


Naslovna stranica MATEMATIKAU nekoliko blog postova objavljivao sam dio tekstova iz matematike kojeg sam davno pisao (1996. god), većinom uz svijeću jer prošlo je nekoliko mjeseci od prestanka rata, dok se uspostavio elekto-prenosni sistem. Nažalost sva planirana poglavlja nisam napisao, šteta, jer danas se ne mogu vratiti u tu furku koju sam tada furo, pa nastaviti ovo po meni vrlo korisno djelo pisati. Po reakcijama koji su mi prijatelji i rijetki čitaoci davali, nije izgledalo loše. Isto tako, od kako sam objavio prve stranice  teksta na blogu, post se jako puno čita što potkrepljuju i statistike koje pratim na blogu. Isto tako u rubrici “Naj postovi” svi mogu vidjeti da se tu konstantno nalaze članci o matematičkoj indukciji. Danas sam konačno završio naslovnu stranu, i otkucao sav tekst koji planiram objaviti. Ostalo je jedno nedovršeno poglavlje koje sam odlučio da ga ne uključujem. Naslovnu stranu koju sam osmislio, sproveo je u djelo moj prijatelj Almir Štrkljević oko 1997 godine.

Naime, kod naslovne strane imao sam ideju da prikažem karikaturu Newtona i famozne jabuke, kao i karikaturu integrala \int f(x) dx. Svojom nadarenošću i sklonošću za crtanjem stripova i karikatura Almir je to vrlo zdušno prihvatio i potrudio se da onako, kako sam zamislio da to i nacrta. Ovom prilikom mu se od srca zahvaljujem.

Tekst sam prekucao i  nije prošao lekturu i korekcije pa sam svjesan da sadrži puno kako kucanih tako i gramatičkih grešaka. Pokušaću ih ispraviti prije nego što cijelokupni tekst stavim za download.

U ovom sabranom radu nalaze se tri poglavlja i to : Matematička indukcija, Funkcije i Izvodi. Knjiga sadrži oko 100 stranica A4 formata i veličine fonta 11.

U koliko nađete za shodno da vam može poslužiti ova knjiga slobodno je komentirajte i dajte svoje sugestije i primjedbe. Nažalost, ne namjeravam ovu knjigu obrađivati ponovo odnosno pisati naredno izdanje, jedini cilj mi je bio pretvoriti je u digitalnu formu.  Cjelokupan tekst može se pogledati ovdje.

Na kraju nekoliko fotografija rukopisa:

IMAG1022IMAG1023IMAG1024IMAG1028

II poglavlje: Funkcije–I dio


… dio teksta napisanog 1996 o nekim temama iz matematike …  Cjelokupan tekst može se pogledati ovdje.

 

Pojam funkcije

Čim čujemo riječ funkcije odmah pomislimo na razna mjesta koja nas čekaju kad završimo fakultet. Bit ćemo neki inženjeri bili diplomirani ili ne, ali funkcije nas čekaju, odnosno neko radno mjesto na kome ćemo obavljati neke poslove, gdje ćemo za uzvrat dobijati platu. Bilo kako bilo funkcija nam je neophodna da bi egzistirali, da bi smo postojali. Samim dobijanjem funkcije postajemo funkcioneri. Čitav ovozemaljski svijet sastoji se iz bezbroj funkcija, nekih procesa razmjenjivanja, uzimanja, oslobađanja, davanja itd. U stvari funkcija je neki proces pri kojem se nešto odvija-događa i pri kome postoji jedan ili više određenih pravila događanja, pa bili oni čak i slučajni (tada govorimoo slučajnim procesima). Sve te životne funkcije dosta su slične pojmu funkcije koju definiše matematika. U stvari nema ni jedne čak i najjednostavnije teoreme u matematici, a da se ne može primjeniti u stvarnom životu. Kada posmatramo neki proces zapazićemo da se neke od veličina koje učestvuju u tom procesu mjenjaju – uzimaju različite vrijednosti, dok druge imaju konstantnu vrijednost. Primjera za to ima bezbroj.

Kada stojimo pored štanda voća. Primjetićemo da svaka kila jabuke dobija jednu te istu sumu novaca od 2 DM (demokratske marke što bi rekao jedam moj prijatelj). Odnosno svaka kila krušaka 3 DM ili grožđa 5 DM. Kada se poveća masa jabuka i ostalog voća poveća se i njihova cijena. U ovom slučaju imamo proporcionalno povećanje cijene voća sa njegovom masom. Nadalje posmatrajmo jednu totalno glupu situaciju u kojoj želimo da naduvamo staklenu flašu. Duvanjem u flašu dovodimo zrak u flašu, ali volumen flaše ostaje isti, samo smo promjenili temparaturu vazduha i pritisak u staklenoj flaši. Ovo je jedan primjer kada se dvije veličine mjenjaju dok je treća konstantna. Primjera ima bezbroj no mi ćemo zaključak dati iz ova dva suštinska primjera. Vidimo da postoje veličine koje se mjenjaju, i koje ostaju konstantne pa ćemo definisati sljedeće:

Definicija 1.

Veličina koja pod datim uslovima može poprimiti različite brojne vrijednosti zovemo promjenjivom veličinom. Veličina koja se u datim uslovima ne mjenja već uvijek „stoji“ na istoj brojnoj vrijednosti zovemo stalnom ili konstantnom veličinom.

Skup svih brojnih vrijednosti date promjenjive veličine zovemo oblast promjene te promjenjive. Konstante koje nikako ne mjenjaju svoju vrijednost zovemo apsolutne konstante. Nrp clip_image002– Ludolfov broj, gravitaciona konstanta clip_image004 itd.

Međutim, u cilju općih formulacija i mogućnosti dobijanja zaključaka, dobro je i te kontantne veličine posmatrati kao specijalne slučajeve promjenjivih veličina. To je pogotovo korisno kod dokazivanja raznih teorema koje su povezane sa konstantnim veličinama.

Definišimo dva skupa clip_image006 i clip_image008, tako da je clip_image010 element skupa clip_image006[1], a clip_image012 element skupa clip_image008[1], drugim riječima clip_image014 i clip_image016. Preslikavanje skupa clip_image018 na clip_image020 definisano je zakonom korespodencije gdje svakom clip_image022odgovara jedan element clip_image024. Element clip_image010[1] koji pripada clip_image026zvaćemo argument ili nezavisno promjenjiva. Element clip_image012[1] koji pripada clip_image020[1] zvaćemo zavisno promjenjiva ili funkcija.

Definicija 2.

Funcija jedne nezavisno promjenjive (jednog argumenta) zovemo preslikavanje skupa clip_image028 (vrijednosti argumenata) na skup clip_image030 vrijednosti promjenjive po jednom određenom fiksnom zakonu korespodencije (dodjeljivanja).

Pravilo pridruživanja označavaćemo sa clip_image032 tako da se funkcija može simbolički napisati:

clip_image034 ili clip_image036 (čitaj y je jednako ef od x)

clip_image038 ili clip_image040 (čitaj y je jednako fi od x)

Definicija 2.2 je smisao simbolike clip_image036[1]. Znači svakom elementu clip_image014[1], odgovara jedan element clip_image016[1]. Definicija 2.2 također nam daje smjernice za definisanje funkcije. Pa tako da bi funkciju definisali potrebno je definisati:

  1. Skup clip_image006[2] vrijednosti elementata clip_image010[2].
  2. Zakon dodjeljivanja ili korespodencije clip_image042
  3. Skup clip_image044 vrijednosti funkcije clip_image036[2].

Skup clip_image046 vrijednosti koji može primiti argument clip_image010[3] zovemo još i oblast definisanosti ili domena funkcije clip_image036[3]. Skup clip_image020[2] zovemo skupom vrijednosti ili kodomena funkcije. Ako je na primjer clip_image048 tjclip_image050 pripada domeni funkcije clip_image052, tada clip_image052[1] pripada kodomeni funkcije odnosno clip_image054. Još se kaže da clip_image056 predstavlja sliku elementa clip_image048[1] u skupu clip_image058. Ako postoji clip_image060 tada clip_image062 nema smisla.

Također se može desiti sa clip_image064 i clip_image066 imamo istu vrijednost funcije odnosno vrijedi da je:

clip_image068

Ovo znači da dvije različite vrijednosti argumenata iz domene preslikavaju se i jednu te istu tačku kodomene. Ovaj slučaj možemo pokazati na jednom jednostavnom primjeru.

Primjer 1.

Ako imamo funkciju clip_image070 , tada za clip_image072 i clip_image074 imamo istu vrijednost funkcije clip_image076.

Matematički izraziti funkciju znači naći određenu uzajamnu korespodenciju između dva skupa. Načini na koji se funkcija zadaje ili izražava više je praktično pitanje nego suštinsko. Funkciju možemo zadati grafički, tablično i analitički.

Grafički način predstavljanja funkcije sastoji se iz geometrijske prezentacije jedne funkcije u koordinatnom sistemu, gdje svaki uređeni par brojeva clip_image078, gdje je clip_image056[1] – argument, a clip_image080– zavisno promjenjiva funkcija, zamišljamo kao par koordinata tačke u koordinatnom sistemu u ravni . Skup svih takvih tačaka u ravni clip_image082 čije su apcise vrijednosti argumenata clip_image056[2], a ordinate odgovarajuće vrijednosti funkcije zovemo grafik funkcije.

Grafik na vidan način prikazuje ponašanje funkcije tj. njenu monotonost, maksimalnu i minimalnu vrijednost, vrijednosti argument, nul tačke funkcije, odnosno sve osobine koje su sastavni dio funkcije. Zato se u drugim naukama Fizici, Biologiji, Psihologiji i dr. izrađuju slični grafici i dijagrami gdje se prati tok nekog procesa (pokusa) i grafički prikazuju osobine tog procesa. Jedan od primjera je dijagram momenta savijanja proste grede. Iz dijagrama možemo primjetiti kako se mjenja moment savijanja duž grede od početne tačke clip_image084 do krajnje tačke clip_image086.

clip_image088

Slika 2.1 Dijagram momenta savijanja grede

Sa slike vidimo da je najveći ili maksimalni momenat u tački clip_image090 koja se nalazi na sredini, odnosno na mjestu gdje djeluje skoncentrisano opterećenje clip_image092. Na slici također uočavamo da je izrađen dijagam u funkciji dužine grede clip_image010[4] odnosno matematički rečeno clip_image094.

Tabelarni način zadavanja funkcije imamo u slučaju kada izvjesnim vrijednostima argumenata clip_image096 pridružujemo zavisno promjenjive clip_image098, a da pri tom neznamo ili nas ne zanima način pridruživanja . Tablični način predstavljanja često koristimo u prirodnim i tehničkim naukama, u eksperimentalnim istraživanjim i sl. Na osnovu eksperimenta dolazimo do uređenih parova clip_image100. Ovi parovi se tabelarno prikazuju na sljedeći način:

Tabela 2.1 Tabearni prikaz funkcije

clip_image102

clip_image104

clip_image106

clip_image108

clip_image110

clip_image112

clip_image114

clip_image116

Analitički način zadavanje funkcije sastoji se u tome da zakon preslikavanja clip_image042[1] damo matematičkim izrazom ili formulom. Domenu funkcije zadane u analitičkom obliku određujemo iz samog izraza, odnosno pronalazimo skup svih mogućih rješenja za koje je izraz ima slisla.

Primjer 2.

Funkcija clip_image118 ima domenu svih realnih brojeva simbolički zapisano clip_image120, jer je izraz (formula) clip_image122 definisan za sve realne brojeve.

Primjer 3.

Funkcija clip_image124 ima domenu svih poziotivnih realnih brojeva manjih ili jednako od 5 simbolički zapisano clip_image126.

Primjer 4.

Funkcija clip_image128 ima domenu koja se izračunava na sljedeći način:

clip_image130 i clip_image132

clip_image134 i clip_image136

Na osnovu gornjih izraza domena je definisana za:

clip_image138

Ako dvije ili više funkcija imaju istu domenu tada se mogu posmatrati zbir, razlika proizvod i količnik funkcija, odnosno mogu se posmatrati određene algebarske operacije među funkcijama. Imamo:

clip_image140

clip_image142

clip_image144

clip_image146

clip_image148

clip_image150

Jednakost dviju funkcija

Zadane su funkcije clip_image152, clip_image154 koje se definisane na skupovima clip_image156, i clip_image158. Za dvije funkcije kažemo da su jednake ako je:

  1. clip_image156[1] – definišu istu domenu,
  2. clip_image158[1] – imaju istu kodomenu,
  3. clip_image160 – imaju iste funkcije.

Parne i neparne funkcije

Definicija 3.

Funkcija clip_image162 je parna ako za vrijednosti argumenata koji su suprotni brojevi njihove vrijednosti su jednake, odnosno ako je:

clip_image164

Definicija 4.

Funkcija clip_image162[1] je neparna ako za vrijednosti argumenata koji su suprotni brojevi njihove vrijednosti su također suprotne, odnosno ako je:

clip_image166

Geometrijska interpretacija parnosti i neparnosti funkcije

Iz definicije parne funkcije proizilazi da ako je tačka clip_image168 pripada grafiku fuhnkcije, tada i tačka clip_image170, također pripada grafu. Pošto su tačke clip_image084[1] i clip_image172 simetrične u odnosu na clip_image174 to je i graf funkcije simetričan u odnosu na clip_image174[1].

clip_image176

Slika 2.2 Grafička interpretacija parne (lijevo) i neparne (desno) funkcije

Analogno (Slika 2.2) iz definicije neparne funkcije uočavamo da ako je tačka clip_image178 pripada grafiku funkcije, tada i tačka clip_image180, također pripada grafiku funkcije. Pošto su tačke clip_image182 simtrične i odnosu na ishodište koordinatnog sistema, zaključujemo da je neparna funkcija centralno simetrična u koordinatnom početku.

Iz geometrijske interpretacije proizilazi da pri konstrukciji grafa parne i neparne funkcije dovoljno je da prvu konstruišemo za pozitivne brojeve clip_image010[5] dok ćemo ostatak konstruisati simetrično osi clip_image012[2], a drugu na pozitivnom dijelu clip_image012[3] ose, a ostatak centralno simetrično tački ishodišta koordinatnog sistem.

Definicija 5.

Funkcija clip_image162[2] koja nije ni parna ni neparna jednostavno zovemo ni parna ni neparna funkcija.

Primjer 5.

Funkcija clip_image184 , gdje je k- cijeli broj, clip_image186,clip_image188 – su parne funkcije.

Primjer 6.

Funkcija clip_image190 , gdje je k- cijeli broj, clip_image192,clip_image194 – su neparne funkcije.

Periodičnost funkcije

Definicija 6.

Funkcija clip_image162[3] se naziva periodičnom ako postoji jedan realan pozitivan broj clip_image196, takav da su vrijednosti funkcije clip_image162[4] u tačkama clip_image198jednake, tj. da za svako clip_image200 važi clip_image202, pri čemu se najmanji pozitivan broj clip_image196[1] zove primitivni period ili kraće periodom funkcije fclip_image204.

Ako clip_image206, domeni funkcije fclip_image208 tada svaki broj oblika clip_image210, gdje je clip_image212 također pripada oblasti definisanosti, i pri čemu je clip_image214. Ovo se lako dokazje jer ako krenemo od početne definicije imamo: clip_image216. Iz gornjeg lako zaključujemo da tačke clip_image218 iz domene funkcije preslikavaju se u jednu tačku clip_image220 skupa clip_image058[1] odnosno kodomene funkcije clip_image052[2]. Također zaključujemo da će se grafik periodične funkcije biti sastavljen od lukova koji se ponavljaju na svakom od segmenata clip_image222, gdje je clip_image224. Prema tome ako je funkcija peroodična dovoljno je analizirati istu na osnovnom segment clip_image226, a ostalom dijelu domene se periodičnost ponavlja.

Primjer 7.

Trigonometrijske funkcije clip_image192[1] , clip_image186[1] su periodične funkcije sa periodom clip_image228, a funkcije clip_image230, clip_image232 sa periodom clip_image234, tj.

clip_image236, pa je clip_image238

Primjer 8.

Funkcija clip_image240 je periodična funkcija s periodomclip_image242, jer je:

clip_image244

I uopće kada imamo:

clip_image246

Ovo ne morate čitati

Periodičnost funkcije može se zadati i samo na nekom segmentuclip_image248. Tako da u primjeru 7 funkciju clip_image250 ograničavamo samo na segment clip_image252, a ispitivanje funkcije clip_image254 na clip_image256.

Periodičnost je pojava vrlo česta u prirodi odnosno u svakodnevnom životu . Periodičnost pojave Sunca, poslije 24 sata, kao i općenito kretanje planeta itd.

Ograničene i neograničene funkcije

Definicija 7.

Funkcija clip_image258 je ograničena u svojoj Domeni (oblasti definisanosti) ako je skup K odnosno skup njenih vrijednosti (Kodomena) ograničena. Drugim riječima ako postoji takva dva broja clip_image260 i clip_image262 da je za sve vrijednosti x clip_image264 vrijedi clip_image266, gdje su clip_image260[1] i clip_image262[1] – realni brojevi.

Geometrijska interpretacija Definicije 7 je takva sa se cijeli grafik funkcije nalazi u dijelu ravni koja je ograničena sa pravcima clip_image268 i clip_image270.

clip_image272

Slika 2.3 Funkcija clip_image274, ograničena je pravim clip_image276 i clip_image278

Za ograničene funkcije jednog argumenta važi sljedeća teorema.

Teorema 2.1.

Ako je funkcija clip_image258[1] ograničena na skupu x clip_image264[1], tada postoji pozitivan broj clip_image280takav da je clip_image282 odnosno clip_image284.

Dokaz:

Ako uzmemo da je brojclip_image286 tj. clip_image288 tada je clip_image290 odnosno clip_image292. Važi i obrnuto.

Primjer 9.

Funkcija clip_image294 ograničena je za clip_image296, tada imamo clip_image298, kao i to da je clip_image300. Ovo pak znači da grafik funkcije sin i cos leže unutar trake koju čine pravci y=1 i y=-1. Vidi sliku 2.4.

Napomena: Ograničenost funkcije može biti i samo s jedne strane odnosno sa gornje ili donje strane.Drugim riječima postoji broj clip_image260[2] takav da je clip_image302 -ograničenost sa donje strane i clip_image262[2] takav da je clip_image304 –ograničenost s gornje strane.

Primjer 10.

Funkcija clip_image070[1] ograničena sa donje strane jer je clip_image306.

Primjer 11.

Funkcija clip_image308 ograničena sa gornje strane jer je clip_image310.

Kažemo da funkcija nije ograničena u koliko ne postoji realni broj M takav da je clip_image312.

clip_image314

Slika 2.4 Ograničenost clip_image316, funkcija pravim clip_image276[1] i clip_image278[1]