C# Jupyter Notebook Part 2/n


What is .NET Jupyter Notebook

In this blog post, we are going to explore the main features in the new C# Juypter Notebook. For those who used Notebook from other programming languages like Python or R, this would be an easy task. First of all, the Notebook concept provides a quick, simple and straightforward way to present a mix of text and $ \Latex $, source code implementation and its output. This means you have a full-featured platform to write a paper or blog post, presentation slides, lecture notes, and other educated materials.

The notebook consists of cells, where a user can write code or markdown text. Once he completes the cell content confirmation for cell editing can be achieved by Ctrl+Enter or by press run button from the notebook toolbar. The image below shows the notebook toolbar, with a run button. The popup combo box shows the type of cell the user can define. In the case of text, Markdown should be selected, for writing source code the cell should be Code.

run button

To start writing code to C# Notebook, the first thing we should do is install NuGet packages or add assembly references and define using statements. In order to do that, the following code installs several nuget packages, and declare several using statements. But before writing code, we should add a new cell by pressing + toolbar button.

The first few NuGet packages are packages for ML.NET. Then we install the XPlot package for data visualization in .NET Notebook, and then we install a set of Daany packages for data analytics. First, we install Daany.DataFrame for data exploration and analysis, and then Daany.DataFrame.Ext set of extensions for data manipulation used with ML.NET.

//ML.NET Packages
#r "nuget:Microsoft.ML.LightGBM"
#r "nuget:Microsoft.ML"
#r "nuget:Microsoft.ML.DataView"

//Install XPlot package
#r "nuget:XPlot.Plotly"

//Install Daany.DataFrame 
#r "nuget:Daany.DataFrame"
#r "nuget:Daany.DataFrame.Ext"
using System;
using System.Linq;

//Daany data frame
using Daany;
using Daany.Ext;

//Plotting functionalities
using XPlot.Plotly;

//ML.NET using
using Microsoft.ML;
using Microsoft.ML.Data;
using Microsoft.ML.Trainers.LightGbm;

The output for the above code:

run button

Once the NuGet packages are installed successfully, we can start with data exploration. But before this declare few using statements:

We can define classes or methods globally. The following code implements the formatter method for displaying Daany.DataFrame in the output cell.

// Temporal DataFrame formatter for this early preview
using Microsoft.AspNetCore.Html;
Formatter<DataFrame>.Register((df, writer) =>
{
    var headers = new List<IHtmlContent>();
    headers.Add(th(i("index")));
    headers.AddRange(df.Columns.Select(c => (IHtmlContent) th(c)));
    
    //renders the rows
    var rows = new List<List<IHtmlContent>>();
    var take = 20;
    
    //
    for (var i = 0; i < Math.Min(take, df.RowCount()); i++)
    {
        var cells = new List<IHtmlContent>();
        cells.Add(td(df.Index[i]));
        foreach (var obj in df[i])
        {
            cells.Add(td(obj));
        }
        rows.Add(cells);
    }
    
    var t = table(
        thead(
            headers),
        tbody(
            rows.Select(
                r => tr(r))));
    
    writer.Write(t);
}, "text/html");

For this demo we will used famous Iris data set. We will download the file from the internet, load it by using Daany.DataFrame, a display few first rows. In order to do that we run the folloing code:

var url = "https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data";
var cols = new string[] {"sepal_length","sepal_width", "petal_length", "petal_width", "flower_type"};
var df = DataFrame.FromWeb(url, sep:',',names:cols);
df.Head(5)

The output looks like this: run button

As can be seen, the last line from the previous code has no semicolon, which means the line should be displayed in the output cell. Let’s move on, and implement two new columns. The new columns will be sepal and petal area for the flower. The expression we are going to use is:

$$ PetalArea = petal_width \cdot petal_length;\ SepalArea = sepal_width \cdot sepal_length; $$

As can be seen, the $\LaTeX$ is fully supported in the notebook.

The above formulea is implemented in the following code:

//calculate two new columns into dataset
df.AddCalculatedColumn("SepalArea", (r, i) => Convert.ToSingle(r["sepal_width"]) * Convert.ToSingle(r["sepal_length"]));
df.AddCalculatedColumn("PetalArea", (r, i) => Convert.ToSingle(r["petal_width"]) * Convert.ToSingle(r["petal_length"]));
df.Head(5)

run button

The data frame has two new columns. They indicate the area for the flower. In order to see basic statistics parameters for each of the defined columns, we call Describe method.

//see descriptive stats of the final ds
df.Describe(false)

run button

From the table above, we can see the flower column has only 3 values. The most frequent value has a frequency equal to 50, which is an indicator of a balanced dataset.

Data visualization

The most powerful feature in Notebook is a data visualization. In this section, we are going to plot some interesting charts.

In order to see how sepal and petal areas are spread in 2D plane, the following plot is implemented:

//plot the data in order to see how areas are spread in the 2d plane
//XPlot Histogram reference: http://tpetricek.github.io/XPlot/reference/xplot-plotly-graph-histogram.html

var faresHistogram = Chart.Plot(new Graph.Histogram(){x = df["flower_type"], autobinx = false, nbinsx = 20});
var layout = new Layout.Layout(){title="Distribution of iris flower"};
faresHistogram.WithLayout(layout);
display(faresHistogram);

run button

The chart is also an indication of a balanced dataset.

Now lets plot areas depending on the flower type:

// Plot Sepal vs. Petal area with flower type

var chart = Chart.Plot(
    new Graph.Scatter()
    {
        x = df["SepalArea"],
        y = df["PetalArea"],
        mode = "markers",
        marker = new Graph.Marker()
        {
            color = df["flower_type"].Select(x=>x.ToString()=="Iris-virginica"?1:(x.ToString()=="Iris-versicolor"?2:3)),
            colorscale = "Jet"
        }
    }
);

var layout = new Layout.Layout(){title="Plot Sepal vs. Petal Area & color scale on flower type"};
chart.WithLayout(layout);
chart.WithLegend(true);
chart.WithLabels(new string[3]{"Iris-virginica","Iris-versicolor", "Iris-setosa"});
chart.WithXTitle("Sepal Area");
chart.WithYTitle("Petal Area");
chart.Width = 800;
chart.Height = 400;

display(chart);

run button

As can be seen from the chart above, flower types are separated almost linearly, since we used petal and sepal areas instead of width and length. With this transformation, we can get a 100% accurate ml model.

Machine Learning

Once we finished with data transformation and visualization we can define the final data frame before machine learning application. To end this we are going to select only two columns for features and one label column which will be flower type.

//create new data-frame by selecting only three columns
var derivedDF = df["SepalArea","PetalArea","flower_type"];
derivedDF.Head(5)

run button

Since we are going to use ML.NET, we need to declare Iris in order to load the data into ML.NET.

//Define an Iris class for machine learning.
class Iris
{
    public float PetalArea { get; set; }
    public float SepalArea { get; set; }
    public string Species { get; set; }
}
//Create ML COntext
MLContext mlContext = new MLContext(seed:2019);

Then load the data from Daany data frame into ML.NET:

//Load Data Frame into Ml.NET data pipeline
IDataView dataView = mlContext.Data.LoadFromEnumerable<Iris>(derivedDF.GetEnumerator<Iris>((oRow) =>
{
    //convert row object array into Iris row

    var prRow = new Iris();
    prRow.SepalArea = Convert.ToSingle(oRow["SepalArea"]);
    prRow.PetalArea = Convert.ToSingle(oRow["PetalArea"]);
    prRow.Species = Convert.ToString(oRow["flower_type"]);
    //
    return prRow;
}));

Once we have data, we can split it into train and test sets:

//Split dataset in two parts: TrainingDataset (80%) and TestDataset (20%)
var trainTestData = mlContext.Data.TrainTestSplit(dataView, testFraction: 0.2);
var trainData = trainTestData.TrainSet;
var testData = trainTestData.TestSet;

The next step in prepare the data for training is define pipeline for dtaa transformation and feature engineering:

//one encoding output category column by defining KeyValues for each category
IEstimator<ITransformer> dataPipeline =
mlContext.Transforms.Conversion.MapValueToKey(outputColumnName: "Label", inputColumnName: nameof(Iris.Species))

//define features columns
.Append(mlContext.Transforms.Concatenate("Features",nameof(Iris.SepalArea), nameof(Iris.PetalArea)));

Once we completes the preparation paert, we can perform the training part. The training start by calling Fit to the pipeline:

%%time
 // Define LightGbm algorithm estimator
IEstimator<ITransformer> lightGbm = mlContext.MulticlassClassification.Trainers.LightGbm();
//train the ML model
TransformerChain<ITransformer> model = dataPipeline.Append(lightGbm).Fit(trainData);

Once the training is completes, we have trained model which can be evaluated. In order to print the evaluation result with formatting, we are going to install Daany DataFrame extension which has implementation of printing results


//evaluate train set
var predictions = model.Transform(trainData);
var metricsTrain = mlContext.MulticlassClassification.Evaluate(predictions);
ConsoleHelper.PrintMultiClassClassificationMetrics("TRAIN Iris DataSet", metricsTrain);
ConsoleHelper.ConsoleWriteHeader("Train Iris DataSet Confusion Matrix ");
ConsoleHelper.ConsolePrintConfusionMatrix(metricsTrain.ConfusionMatrix);

run button

//evaluate test set
var testPrediction = model.Transform(testData);
var metricsTest = mlContext.MulticlassClassification.Evaluate(testPrediction);
ConsoleHelper.PrintMultiClassClassificationMetrics("TEST Iris Dataset", metricsTest);
ConsoleHelper.ConsoleWriteHeader("Test Iris DataSet Confusion Matrix ");
ConsoleHelper.ConsolePrintConfusionMatrix(metricsTest.ConfusionMatrix);

run button

As can be seen, we have a 100% accurate model for Iris flower recognition. Now, let’s add a new column into the data frame called Prediction to have a model prediction in the data frame.
In order to do that, we are evaluating the model on the train and the test data set. Once we have a prediction for both sets, we can join them and add as a separate column in Daany data frame. The following code does exactly what we described previously.

var flowerLabels = DataFrameExt.GetLabels(predictions.Schema).ToList();
var p1 = predictions.GetColumn<uint>("PredictedLabel").Select(x=>(int)x).ToList();
var p2 = testPrediction.GetColumn<uint>("PredictedLabel").Select(x => (int)x).ToList();
//join train and test
p1.AddRange(p2);
var p = p1.Select(x => (object)flowerLabels[x-1]).ToList();
//add new column into df
var dic = new Dictionary<string, List<object>> { { "PredictedLabel", p } };
var dff = derivedDF.AddColumns(dic);
dff.Head()

run button The output above shows the first few rows in the data frame. To see the few last rows from the data frame we call a Tail method.

dff.Tail()

run button

In this blog post, we saw how can we be more productive when using .NET Jupyter Notebook with Machine Learning and Data Exploration and transformation, by using ML.NET and Daany – DAtaANalYtics library. Complete source code for this notebook can be found at GitHub repo: https://github.com/bhrnjica/notebooks/blob/master/net_jupyter_notebook_part2.ipynb

How to start with C# Jupyter Notebook


Yesterday at Ignite conference .NET team has announced the Jupyter Notebook for .NET languages C# and F#. This is a huge step ahead for all data scientists who want to do data science and machine learning on the .NET platform. With C# Jupyter Notebook you can perform data exploration and transformation, training, evaluation and testing your Ml models. All operations are performed by code block and you can quickly see the result without running and debugging application every time you want to change something. In order to see how it looks like, in this blog post we are going to explore some of the basic functionalities in C# Jupyter Notebook.

How to Install .NET Jupyter Notebook

In order to install Jupyter Notebook you can see the official blog post, anyhow here I am going to present this process because it is very short and easy. Before install .NET Jupyter components, you have to install the latest version of .NET SDK and Anaconda. Once you have Anaconda installed on your machine, open Anaconda Prompt from Windows Start Menu.

To run Anaconda Prompt you have two options:

  • to open power shell or
  • to open classic command prompt.

Select Anaconda Powershell Prompt, and the powershell window will pop up. Once the powershell prompt is opened we can start with the installation of Jupyter Notebook components. The first step is to install the dotnet try global tool.

Type this to cmd:

dotnet tool install -g dotnet-try

After some time you should get the following message:

Then we need to install .NET Kernel by typing the following command:

dotnet try jupyter install 

Then the following message should appear:

In case you have any problems with the installation please refer to official blog post or post an Issue at https://github.com/dotnet/try/issues.

Also note that this version of Jupyter Notebook is in preview, so not all actions will work as you expected. Now that you have installed C# Jupyter, you can open Jupyter notebook from the Anaconda navigator, or just type Jupyter Notebook in to Anaconda Prompt. Once we did that, your default bowers pops up and shows the starting directory in the Jupyter Notebook. If you click New button, you can see option to create C# and F# notebooks. Press C#, and the new C# notebook will appeared in the browser.

Try some basic stuff in notebook.

In the next blog post we are going to explore more and see some of the coolest features in C# Jupyter Notebook.