Author Archives: Bahrudin Hrnjica

Using CNTK and C# to train Mario to drive Kart


Introduction

In this blog post I am going to explain one of possible way how to implement Deep Learning ML to play video game. For this purpose I used the following:

  1.  N64 Nintendo emulator which can be found here,
  2. Mario Kart 64 ROM, which can be found on internet as well,
  3. CNTK – Microsoft Cognitive Toolkit
  4. .NET Framework and C#

The idea behind this machine learning project is to capture images together with action, while you play Mario Kart game. Then captured images are transformed into features of training data set, and action keys into label hot vectors respectively.  Since we need to capture images, the emulator should be positioned at fixed location and size during playing the game, as well as during testing algorithm to play game. The flowing image shows N64 emulator graphics configuration settings.

2018-02-15_16-34-03

Also the N64 emulator is positioned to Top-Left corned of screen, so it is easier to capture the images.

Data collection for training data set

During image captures game is played as you would play normally. Also no special agent, not platform is required.

In .NET and C# it is implemented image capture from the specific position of screen, as well as it is recorded which keys are pressed during game play. In order to record keys press, the code found here is modified and used.

The flowing image shows the position of N64 emulator with playing Mario Kart game (1), the windows which is capture and transform the image (2), and the application which collect images, and key press action and generated training data set into file(3).

2018-02-15_16-31-42

The data is generated on the following way:

  • each image is captured, resized to 100×74 pixels and gray scaled prior to be transformed and persisted to data set training file.
  • before image is persisted the hotkey of action key press is recorded and connected to image.

So the training data is persisted into CNTK format which consist of:

  1. |label – which represent 5 component hot vector, indicate: Forward, Break, Forward-Left, Forward-Right and None (1 0 0 0 0)
  2. |features consist of 100×74 numbers which represent pixels of the images.

The following data sample shows how training data set are persisted in the txt file:

|label 1 0 0 0 0 |features 202 202 202 202 202 202 204 189 234 209 199...
|label 0 1 0 0 0 |features 201 201 201 201 201 201 201 201 203 18...
|label 0 0 1 0 0 |features 199 199 199 199 199 199 199 199 199 19...
|label 0 0 0 1 1 |features 199 199 199 199 199 199 199 199 199 19...

Since my training data is more than 300 000 MB of size, I provided just few BM sized file, but you can generate file as big as you wish with just playing the game, and running the flowing code from Program.cs file:

await GenerateData.Start();

Training Model to play the game

Once we generate the data, we can move to the next step: training RCNN model to play the game. For training model the CNTK is used. Also since we play a game and previous sequence will determined the next sequence in the game, LSTM RNN is used. More information about CNTK and LSTM can be found in previous posts. In my case I have collected nearly 15000 images during several round of playing the same level and route. Also for more accurate model much more images should be collected, nearly 100 000. The model is trained in one hour, with 500000 iterations. The source code about whole project can be found on GitHub page. (http://github.com/bhrnjica/LSTMBotGame )

By running the following code, the training process is started with provided training data:

CNTKDeepNN.Train(DeviceDescriptor.GPUDevice(0));

Playing the game with CNTK model

Once we trained the model, we move to the next step: playing a game. The emulator should be positioned on the same position and with the same size in order to play the game.ONce the model is trained and created in th training folder, the playing game can be achive by running:

var dev = DeviceDescriptor.CPUDevice;
MarioKartPlay.LoadModel(“../../../../training/mario_kart_modelv1”, dev);
MarioKartPlay.PlayGame(dev);

How it looks like on my case, you can see on this youtube video:

Advertisements

Step by step CNTK Object Detection on Custom Dataset with Python


Recently, I was playing with CNTK object detection API, and produced very interesting model which can recognize the Nokia3310 mobile phone. As you probably already know Nokia3310 is legendary mobile phone which was popular 15 years ago, and recently re-branded by Nokia.

In this blog post I will provide you with step by step introductions how to:

  • prepare images for training
  • generate training data for selected images by using VOOT tool,
  • prepare Python code for object detection using FasterRCNN alogirithm implemented with CNTK,
  • testing custom image in order to detect Nokia3310 on image.

Preparing Image for model training

Finding appropriate images for our model is very easy. Just go to google.com and type “Nokia3310” and bum, there are plenty of images.

Find at least 20 images, and put into the Nokia3310 image folder. Once we collect enough image for the model, we can move to the next step.

Generating data from the image data set using VOTT tool

In order to train image detection model by using FasterRCNN algoritm, we have to provide three kinds of data separated in three different files:

  1. class_map file – which contains list of available objects which the model should recognize on the image,
  2. train_image file – which contains the list of image file paths
  3. train roi file – which contains “region of interest” data. The data is consisting of list of 4 numbers which represent the top, left, right and bottom coordinate producing rectangle of the object.

Seems pretty much job for simple object detection, but hopefully there is a tool which can generate all data for us. It is called  VoTT: Visual Object Tagging Tool, and it can be found at : https://github.com/Microsoft/VoTT.

Generating Image data with VOTT

Here we will explain in detail how to generate image data by using VOTT tool.

1. Open VOTT tool, from File menu and select folder we previously collected with images.

2. Enter “nokia3310”  in Labels edit box and click Continue button. In case we have more than one

3. Then for each image, make a rectangle on each object which represents the Nokia3310.

4. Once you finish with tagging for one image, press Next, and do the same for all selected images.

5. Once the process of tagging is finished, then the export action can be performed.

6. With Export option data is generated for each rectangle we made, and the two files are generated for each image in data set. Also once the tagging process is completed VOTT tool generated three folders:

a) negative – contains images which have no any tagged rectangle (no nokia3310 on images),

b) positive – contains approximate 70% of all images which we tagged Nokia3310 object, and this folder will be used for training the model,

c) testImages – contains approximate 30% of all images which we tagged Nokia3310 object, and this folder will be used for evaluation and testing the model.

The VOOT classified all images in three folders. In case there are images with no tagging, images will be moved to negatives, all other images is separated into positive and testImages folder.

From each image two files are generated:

[imagename].bboxes.labels.tsv – which consist of all labels tagged in image file.

[imagename].bboxes.tsv – rectangle coordinates of all tags in the image.

Processing VOTT generated data into CNTK training and testing dataset files

Once we have VOTT generated data, we need to transform them into cntk format. First we will generate: class_map file.txt

7. Create new “class_map file.txt”  file, and put the following text into it:

__background__	0
Nokia3310	1

As can be seen there is only one class which we want to detect, and ti is Nokia3310, (the __backgroud__ is reserved tag which is added by default and cannot be removed). Now we need to generate the second file:
8. Create new “train_image_file.txt” file, and put text similar with this one:

 
0 positive/img01.jpg 0
1 positive/img05.jpg 0
2 positive/img10.jpg 0
...

The content of the file is list of all images placed in positive folder, with ID on the left side and zero on the right side, separated by tabulator. Image path should be relative.
9. Create new “train_roi_file.txt”, and put data similar with this one:

 
0 |roiAndLabel <span style="color: #3366ff;">0	10	418	340</span> <span style="color: #ff6600;">1</span>
1 |roiAndLabel <span style="color: #3366ff;">631	75	731	298</span> <span style="color: #ff6600;">1</span>
2 |roiAndLabel <span style="color: #3366ff;">47	12	222	364</span> <span style="color: #ff6600;">1</span>
3 |roiAndLabel <span style="color: #3366ff;">137	67	186	184</span> <span style="color: #ff6600;">1</span>	<span style="color: #3366ff;">188	69	234	180</span> <span style="color: #ff6600;">1</span>
...

As can be seen blue text is rectangle coordinate, which folow the red number indicates classValue. Since we have only one class 1 is always after 4 blue numbers. Also in case image contains more than one rectangle which is the case of line 3, after every four blue numbers it goes class value.

This is procedure how can we make three files for training, needed to run CNTK object detection. Also for testing data we need image and roi files. WHole dataset and coresponded files can be found on GitHub page.

Implementation of Object Detection

CNTK comes with example how to implement object detection which can be found at: https://github.com/Microsoft/CNTK/tree/master/Examples/Image/Detection

So I took the source code from there, and modify it for my case, and published at git hub which can be found here.

10. Before downloading source code, be sure the CNTK 2.3 is installed on your machine with Anaconda 4.1.1, in the environment with Python 3.5 version.

11. Clone the Github repository https://github.com/bhrnjica/ObjectDetection and open it in Visual Studio or Visual Studio Code.

12. First thing you should do is to download pre-trained “Alex net” model. You can easily download it, by running the download_model.py python code placed in PretrainedModels folder.

13. Process of training is started when you run Nokia3310_detection.py python file. Beside pre-trained model, no other resources are required in order to run the project. The folowing picture shows main parts of the solution.

Once the training process is finished, once image is evaluated and shown in order to evaluate how model is good in detecting the phone. Such image is shows at the beginning of the blog post.

All source code with image dataset you can download from GitHub at https://github.com/bhrnjica/ObjectDetection

 

 

CNTK 106 Tutorial – Time Series prediction with LSTM using C#


In this post will show how to implement CNTK 106 Tutorial in C#. This tutorial lecture is written in Python and there is no related example in C#. For this reason I decided to translate this very good tutorial into C#. The tutorial can be found at: CNTK 106: Part A – Time series prediction with LSTM (Basics)  and uses sin wave function in order to predict time series data. For this problem the Long Short Term Memory, LSTM, Recurrent Neural Network is used.

Goal

The goal of this tutorial is prediction the simulated data of a continuous function ( sin wave). From N previous values of the y=sin(t) function where y is the observed amplitude signal at time t, prediction of  M values of y is going to predict for the corresponding future time points.

The excitement of this tutorial is using the LSTM recurrent neural network which is nicely suited for this kind of problems. As you probably know LSTM is special recurrent neural network which has ability to learn from its experience during the training. More information about this fantastic version of recurrent neural network can be found here.

The blog post is divided into several sub-sections:

  1. Simulated data part
  2. LSTM Network
  3. Model training and evaluation

Since the simulated data set is huge, the original tutorial has two running mode which is described by the variable isFast. In case of fast mode, the variable is set to True, and this mode will be used in this tutorial. Later, the reader may change the value to False in order to see much better training model, but the training time will be much longer. The Demo for this this blog post exposes variables of the batch size and iteration number to the user, so the user may defined those numbers as he/she want.

Data generation

In order to generate simulated sin wave data, we are going to implement several helper methods. Let N and M  be a ordered set of past values and future (desired predicted values) of the sine wave, respectively. The two methods are implemented:

  1. generateWaveDataset()

The generateWaveDataset takes the periodic function,set of independent values (which is corresponded the time for this case) and generate the wave function, by providing the time steps and time shift. The method is related to the generate_data() python methods from the original tutorial.

static Dictionary<string, (float[][] train, float[][] valid, float[][] test)> loadWaveDataset(Func<double, double> fun, float[] x0, int timeSteps, int timeShift)
{
    ////fill data
    float[] xsin = new float[x0.Length];//all data
    for (int l = 0; l < x0.Length; l++)
        xsin[l] = (float)fun(x0[l]);


    //split data on training and testing part
    var a = new float[xsin.Length - timeShift];
    var b = new float[xsin.Length - timeShift];

    for (int l = 0; l < xsin.Length; l++)
    {
        //
        if (l < xsin.Length - timeShift) a[l] = xsin[l]; // if (l >= timeShift)
            b[l - timeShift] = xsin[l];
    }

    //make arrays of data
    var a1 = new List<float[]>();
    var b1 = new List<float[]>();
    for (int i = 0; i < a.Length - timeSteps + 1; i++)
    {
        //features
        var row = new float[timeSteps];
        for (int j = 0; j < timeSteps; j++)
            row[j] = a[i + j];
        //create features row
        a1.Add(row);
        //label row
        b1.Add(new float[] { b[i + timeSteps - 1] });
    }

    //split data into train, validation and test data set
    var xxx = splitData(a1.ToArray(), 0.1f, 0.1f);
    var yyy = splitData(b1.ToArray(), 0.1f, 0.1f);


    var retVal = new Dictionary<string, (float[][] train, float[][] valid, float[][] test)>();
    retVal.Add("features", xxx);
    retVal.Add("label", yyy);
    return retVal;
}

Once the data is generated, three datasets should be created: train, validate and test dataset, which are generated by splitting the dataset generated by the above method. The following splitData method splits the original sin wave dataset into three datasets,

static (float[][] train, float[][] valid, float[][] test) splitData(float[][] data, float valSize = 0.1f, float testSize = 0.1f)
{
    //calculate
    var posTest = (int)(data.Length * (1 - testSize));
    var posVal = (int)(posTest * (1 - valSize));

    return (data.Skip(0).Take(posVal).ToArray(), data.Skip(posVal).Take(posTest - posVal).ToArray(), data.Skip(posTest).ToArray());
}

In order to visualize the data, the Windows Forms project is created. Moreover, the ZedGraph .NET class library is used in order to visualize the data. The following picture shows the generated data.

Network modeling

As mentioned on the beginning of the blog post, we are going to create LSTM recurrent neural network, with 1 LSTM cell for each input. We have N inputs and each input is a value in our continuous function. The N outputs from the LSTM are the input into a dense layer that produces a single output. Between LSTM and dense layer we insert a dropout layer that randomly drops 20% of the values coming from the LSTM to prevent overfitting the model to the training dataset. We want use use the dropout layer during training but when using the model to make predictions we don’t want to drop values.

The description above can be illustrated on the following picture:

The implementation of the LSTM can be sumarize in one method, but the real implementation can be viewed in the demo sample which is attached with this blog post.
The following methods implements LSTM network depicted on the image above. The arguments for the method are already defined.

public static Function CreateModel(Variable input, int outDim, int LSTMDim, int cellDim, DeviceDescriptor device, string outputName)
{

    Func<Variable, Function> pastValueRecurrenceHook = (x) => CNTKLib.PastValue(x);

    //creating LSTM cell for each input variable
    Function LSTMFunction = LSTMPComponentWithSelfStabilization<float>(
        input,
        new int[] { LSTMDim },
        new int[] { cellDim },
        pastValueRecurrenceHook,
        pastValueRecurrenceHook,
        device).Item1;

    //after the LSTM sequence is created return the last cell in order to continue generating the network
    Function lastCell = CNTKLib.SequenceLast(LSTMFunction);

    //implement drop out for 10%
    var dropOut = CNTKLib.Dropout(lastCell,0.2, 1);

    //create last dense layer before output
    var outputLayer =  FullyConnectedLinearLayer(dropOut, outDim, device, outputName);

    return outputLayer;
}

Training the network

In order to train the model, the nextBatch() method is implemented that produces batches to feed the training function. Note that because CNTK supports variable sequence length, we must feed the batches as list of sequences. This is a convenience function to generate small batches of data often referred to as minibatch.

private static IEnumerable<(float[] X, float[] Y)> nextBatch(float[][] X, float[][] Y, int mMSize)
{

    float[] asBatch(float[][] data, int start, int count)
    {
        var lst = new List<float>();
        for (int i = start; i < start + count; i++) { if (i >= data.Length)
                break;

            lst.AddRange(data[i]);
        }
        return lst.ToArray();
    }

    for (int i = 0; i <= X.Length - 1; i += mMSize) { var size = X.Length - i; if (size > 0 && size > mMSize)
            size = mMSize;

        var x = asBatch(X, i, size);
        var y = asBatch(Y, i, size);

        yield return (x, y);
    }
}

Note: Since the this tutorial is implemented as WinForms C# project which can visualize training and testing datasets, as well as it  can show the best found model during the training process, there are lot of other implemented methods which are not mentioned here, but can be found in the demo source code attached in this blog post.

Key Insight

When working with LSTM the user should pay attention on the following:

Since LSTM must work with axes with unknown dimensions, the variables should be defined on different way as we could saw in the previous blog posts. So the input and the output variable are initialized with the following code listing:

// build the model
var feature = Variable.InputVariable(new int[] { inDim }, DataType.Float, featuresName, null, false /*isSparse*/);
var label = Variable.InputVariable(new int[] { ouDim }, DataType.Float, labelsName, new List<CNTK.Axis>() { CNTK.Axis.DefaultBatchAxis() }, false);

As specified in the original tutorial: “Specifying the dynamic axes enables the recurrence engine handle the time sequence data in the expected order. Please take time to understand how to work with both static and dynamic axes in CNTK as described here, the dynamic axes is key point in LSTM.
Now the implementation is continue with the defining learning rate, momentum, the learner and the trainer.

 
var lstmModel = LSTMHelper.CreateModel(feature, ouDim, hiDim, cellDim, device, "timeSeriesOutput");

Function trainingLoss = CNTKLib.SquaredError(lstmModel, label, "squarederrorLoss");
Function prediction = CNTKLib.SquaredError(lstmModel, label, "squarederrorEval");


// prepare for training
TrainingParameterScheduleDouble learningRatePerSample = new TrainingParameterScheduleDouble(0.0005, 1);
TrainingParameterScheduleDouble momentumTimeConstant = CNTKLib.MomentumAsTimeConstantSchedule(256);

IList<Learner> parameterLearners = new List<Learner>() {
    Learner.MomentumSGDLearner(lstmModel.Parameters(), learningRatePerSample, momentumTimeConstant, /*unitGainMomentum = */true)  };

//create trainer
var trainer = Trainer.CreateTrainer(lstmModel, trainingLoss, prediction, parameterLearners);

Now the code is ready, and the 10 epochs should return acceptable result:

 
// train the model
for (int i = 1; i <= iteration; i++)
{
    //get the next minibatch amount of data
    foreach (var miniBatchData in nextBatch(featureSet.train, labelSet.train, batchSize))
    {
        var xValues = Value.CreateBatch<float>(new NDShape(1, inDim), miniBatchData.X, device);
        var yValues = Value.CreateBatch<float>(new NDShape(1, ouDim), miniBatchData.Y, device);

        //Combine variables and data in to Dictionary for the training
        var batchData = new Dictionary<Variable, Value>();
        batchData.Add(feature, xValues);
        batchData.Add(label, yValues);

        //train minibarch data
        trainer.TrainMinibatch(batchData, device);
    }

    if (this.InvokeRequired)
    {
        // Execute the same method, but this time on the GUI thread
        this.Invoke(
            new Action(() =>
            {
                //output training process
                progressReport(trainer, lstmModel.Clone(), i, device);
            }
            ));
    }
    else
    {
        //output training process
        progressReport(trainer, lstmModel.Clone(), i, device);

    }             
}

Model Evaluation

Model evaluation is implemented during the training process. In this way we can see the learning process and how the model is getting better and better.

Fore each minibatch the progress method is called which updates the charts for the training and testing data set.

void progressReport(Trainer trainer, Function model, int iteration, DeviceDescriptor device)
{
    textBox3.Text = iteration.ToString();
    textBox4.Text = trainer.PreviousMinibatchLossAverage().ToString();
    progressBar1.Value = iteration;

    reportOnGraphs(trainer, model, iteration, device);
}

private void reportOnGraphs(Trainer trainer, Function model, int i, DeviceDescriptor device)
{
    currentModelEvaluation(trainer, model, i, device);
    currentModelTest(trainer, model, i, device);
}

The following picture shows the training process, where the model evaluation is shown simultaneously, for the training and testing data set.
Also the simulation of the Loss value during the training is simulated as well.

As can be see the blog post extends the original Tutorial with some handy tricks during the training process. Also this demo is good strarting point for development bether tool for LSTM Time Series training. The full source code of this blog post, which shows much more implementation than presented in the blog post can be found here.

Advance Technology Days 13: Predavanje o C# 7.* kompajleru


Predavanje o novoj verziji C# 7 kompajlera prošla je vrlo uspješno, a mnogobrojna publika pokazala je da se ipak i ovakve teme mogu uraditi zanimljive i interesantne.

Sve prezentirano na predavanju moguće je preuzeti sa donjeg linka. Na linku je uključena prezentacijska datoteka i demo primjeri u C#:

Trikovi u C# 7.1 u službi objektnog orijentiranog i funkcionalnog programera

 

Vidimo se na ATD14